当前位置: 小笋芽 > 考试时间 > > 正文

八年级数学试题

2025-07-10 0条评论

八年级数学试题

在学习的征途中,八年级无疑是一个关键节点,它不仅承接着小学的基础,也为步入更高年级铺路架桥。提及八年级,数学这门学科往往是让学生们既爱又恨的科目。今天,我们就来深入探讨一下“八年级数学试题”这一话题,看看其中蕴含的奥秘与挑战。

一、八年级数学试题的特点

八年级数学试题,相较于低年级,更加注重逻辑思维的训练和抽象能力的提升。从基础的代数运算到几何图形的性质探索,再到数据分析的统计初步,内容广泛而深入。试题形式也更加多样,不仅有选择题、填空题,还有解答题和应用题,旨在全方位考察学生的知识掌握程度和解决问题能力。

二、解题技巧与策略

面对八年级数学试题,掌握有效的解题技巧至关重要。首先,审题要仔细,避免因粗心大意而失分。对于复杂问题,学会分解步骤,逐一突破。其次,建立错题本,定期回顾,分析错误原因,巩固薄弱环节。再者,利用图形辅助理解,尤其是对于几何题目,直观的图示往往能迅速找到解题线索。最后,培养逆向思维和批判性思考,从不同角度审视问题,寻找最优解。

三、实际应用与生活联系

八年级数学不仅仅是书本上的知识,更与我们的日常生活紧密相连。比如,比例和百分比的学习可以帮助我们更好地理解打折促销、利息计算等日常生活中的经济现象。几何图形的性质在建筑设计、家具布局等方面也有着广泛应用。通过将数学知识应用于实际问题解决,不仅能增强学习兴趣,还能提升解决实际问题的能力。

四、家长与教师的角色

在孩子面对八年级数学试题的挑战时,家长和教师扮演着不可或缺的角色。家长应给予孩子足够的鼓励和支持,营造良好的学习氛围,适时引导孩子进行复习和总结。教师则需根据学生个体差异,实施差异化教学,设计针对性的练习学生查漏补缺,激发潜能。

五、面对挑战,勇往直前

八年级数学试题虽难,但每一步的挑战都是成长的阶梯。面对难题,不轻言放弃,勇于探索,每一次的攻克都是对自己能力的肯定。记住,数学之美在于其严谨的逻辑和无限的可能。当你真正沉浸其中,你会发现,那些看似复杂的公式和定理背后,隐藏着世界的奥秘和规律。

回顾整个探讨过程,我们不难发现,八年级数学试题既是检验学习成果的工具,也是促进思维发展的桥梁。它要求我们在掌握基础知识的同时,更要学会灵活运用,勇于探索未知。正如攀登高峰,虽然路途崎岖,但当你站在顶峰,回望来时路,那份成就感和满足感将是你最宝贵的财富。让我们携手共进,在数学的海洋中扬帆远航,迎接每一个挑战,收获每一份成长。

八年级下册数学四边形测试题

在做 八年级 数学单元测试题的勤者的心上,汗是甜的,美的。以下是我为大家整理的八年级下册数学四边形测试题,希望你们喜欢。

八年级下册数学四边形试题

一、单选题(每小题4分,共40分)

1、在四边形ABCD中,O是对角线的交点,能判定这个四边形是下方形的条件是( )

A. AC=BD,AD CD B. AD∥BC,∠A=∠C

C. AO=BO=OC=DO,AB=BC D. AO=CO,BO=DO,AB=BC

2、矩形的四个内角平分线围成的四边形( )

A. 一定是正方形 B. 是矩形 C. 菱形 D. 只能是平行四边形

3、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁片的面积是( )

A. 8cm B. 64cm C. 8cm 2 D. 64cm 2

4、如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,∠APD等于( )

A. 42° B. 48° C. 52° D. 58°

5、如图,□ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是( )

A. 1<m<11 B. 2<m<22

C. 10<m<12 D. 5<m<6

6、如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于( )

A. B. C. D.

7、如下图,延长方形ABCD的一边BC至E,使CE=AC,连结AE交CD于F,则∠AFC的度数是( )

A. 112.5° B. 120°

C. 122.5° D. 135°

8、如图,E是平行四边形内任一点,若S □ABCD=8,则图中阴影部分的面积是( )

A. 3 B. 4 C. 5 D. 6

9、如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,则△BEF的面积为( )

A. 6 B. 4 C. 3 D. 2

10、四边形ABCD的对角线AC、BD交于点O,设有以下论断:

<1>AB=BC:<2>∠DAB=90°:<3>BO=DO,AO=CO:<4>矩形ABCD;<5>菱形ABCD;<6>下方形ABCD,则下列推论中不正确的是( )

A. B. C. D.

二、填空题(每小题5分,共20分)

11、如图,正方形ABCD边长为1,E、F、G、H分别为其各边的中点,则图中阴影部分的面积为( )。

12、如图是由5个边长为1的正方形组成了“十”字型对称图形,则图中∠BAC的度数是( )。

13、如图,在□ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,以下结论:①BE=DF;②AG=GH=HC;③ :④S △ ABE=3S △ AGE其中正确的有( )

14、如图,是用4个相同的小矩形与一个小正方形镶嵌成的正方形图案,已知图案的面积为49,小正方形的面积为4,若用x,y表示表示小矩形的两边长(x>y),请观察图案,写出用x,y表示的三个等式。

三、解答题

15、如图,在矩形ABCD中,∠BAD的平分线交BC于点E,O为对角线AC、BD的交点,且∠CAE=15°

(1)求证:△AOB为等边三角形: (2)求∠BOE度数。

16、已知:如图,在□ABCD中,BE.CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求□ABCD的周长和面积。

17、(1)图中将两个等宽矩形重叠一起,则重叠四边形ABCD是什么特殊四边形不需证明。

(2)若(1)中是两个全等的矩形,矩形的长为8cm,宽为4cm,重叠一起时不完全重合,试求重叠四边形ABCD的最小面积和最大面积,并请对面积最大时的情况画出示意图。

18、已知:在△ABC中,∠C=90°,∠A=30°,BC=3cm,AB边上有一只小虫P,由A向B沿AB以1cm/秒的爬行,过P做PE⊥BC于E,PF⊥AC于F,求:(1)矩形PECF的周长y(cm)与爬行时间t(秒)的函数关系式,及自变量的取值范围;

(2)小虫爬行多长时间,四边形PECF是正方形。

19、(1)如图,已知□ABCD,试用三种 方法 将它分成面积相等的两部分。(保留作图痕迹,不写作法)

由上述方法,你能得到什么一般性的结论

(2)解决问题:有兄弟俩分家时,原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口井P,如图所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗(保留作图痕迹,不写作法)

20、如图,在△ABC中,AB=BC,BD是中线,过点D作DE∥BC,过点A作AE∥BD,AE与DE交于点E.求证:四边形ADBE是矩形.

21、如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA角平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论。

22、已知:在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连结DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N.

(1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H.连结HE、HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明).

(2)当点D旋转到图2或图3中的位置时,∠AMF与∠BNE有何数量关系请分别写出猜想,并任选一种情况证明.

23、如图,四边形ABCD中,AC=6,BD=8,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去得到四边形A nB nC nD n。

(1)证明:四边形A1B1C1D1是矩形;

(2)仔细探索,解决以下问题:(填空)①四边形A1B1C1D1的面积为__A2B2C2D2的面积为__;②四边形AnBnCnDn的面积为__(用含n的代数式表示);③四边形A5B5C5D5的周长为__。

八年级下册数学四边形测试题参考答案

C

试题解析:

【分析】

本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.

根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.

【解答】

解:A.因为条件AD∥CD,且AD=CD不能成立,所以不能判定为正方形;

B.不能,只能判定为平行四边形;

C.能;

D.不能,只能判定为菱形.

故选C.

A

试题解析:

【分析】

本题考查了矩形的性质与判定、正方形的判定、等腰直角三角形的判定与性质、全等三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.由矩形的性质和角平分线证出四边形GMON为矩形,再证出△DOC、△AMD、△BNC是等腰直角三角形,得出OD=OC,证明△AMD≌△BNC,得出NC=DM,得出OM=ON,即可得出结论.

【解答】

解:如图所示:∵四边形ABCD是矩形,

∴∠BAD=∠CBA=∠BCD=∠ADC=90°, AD=BC,

∵AF,BE是矩形的内角平分线.

∴∠DAM=∠BAF=∠ABE=∠CBE=45°.

∴∠1=∠2=90°.

同理:∠MON=∠OMG=90°,

∴四边形GMON为矩形.

又∵AF、BE、DK、CJ为矩形ABCD的角的平分线,

∴△DOC、△AMD、△BNC是等腰直角三角形,

∴OD=OC,

在△AMD和△BNC中,

∴△AMD≌△BNC(AAS),

∴NC=DM,

∴NC-OC=DM-OD,

即OM=ON,

∴矩形GMON为正方形.

故选A.

D

试题解析:

【分析】

本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.解题过程中要注意根据实际意义进行值的取舍.

可设正方形的边长是xcm,根据“余下的面积是48cm2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x-2,根据矩形的面积公式即可列出方程求解.

【解答】

解:设正方形的边长是xcm,根据题意得x(x-2)=48,

解得x1=-6(舍去),x2=8,

那么原正方形铁片的面积是8×8=64(cm2).

故选D.

B

试题解析:

【分析】

本题考查三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等.由翻折可得∠PDE=∠CDE,由中位线定理得DE∥AB,所以∠CDE=∠DAP,进一步可得∠APD=∠CDE.

解:∵△PED是△CED翻折变换来的,

∴△PED≌△CED,

∴∠CDE=∠EDP=48°,

∵DE是△ABC的中位线,

∴DE∥AB,

∴∠APD=∠CDE=48°,

故选B.

A

试题解析:

【分析】

本题考查对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA、OB后得出OA-OB

八年级下数学期末试卷分析

数学期末考试与 八年级 学生的学习是息息相关的。我整理了关于八年级下数学期末试卷,希望对大家有帮助!

八年级下数学期末试题

一、选择题:本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请将正确的答案填在答题卡上.

1.36的算术平方根是()

A.6 B.﹣6 C.±6 D.

2.在平面直角坐标系中,点A(l,3)关于原点O对称的点A′的坐标为()

A.(﹣1,3) B.(1,﹣3) C.(3,1) D.(﹣1,﹣3)

3.已知实数x,y满足 ,则以x,y的值为两边长的等腰三角形的周长是()

A.20或16 B.20

C.16 D.答案均不对

4.函数y=x﹣2的图象不经过()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()

A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD

6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()

A.10 B.7 C.5 D.4

7.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()

A.BD平分∠ABC B.△BCD的周长等于AB+BC

C.AD=BD=BC D.点D是线段AC的中点

8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:

①A,B两城相距300千米;

②乙车比甲车晚出发1小时,却早到1小时;

③乙车出发后2.5小时追上甲车;

④当甲、乙两车相距50千米时,t= 或 .

其中正确的结论有()

A.1个 B.2个 C.3个 D.4个

二、填空题:本大题共10小题,每小题3分,共30分,请将答案填在答题卡上.

9.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).

10.若 的值在两个整数a与a+1之间,则a=.

11.口袋内装有一些除颜色外完全相同的3个红球、2个白球.从中任意摸出一个球,那么摸出球(填“红”或“白”)的概率大.

12.将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是.

13.在平面直角坐标系xOy中,点P(2,a)在正比例函数 的图象上,则点Q(a,3a﹣5)位于第象限.

14.已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+3的图象上的两点,则y1y2(填“>”或“<”或“=”).

15.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.

16.已知关于x的分式方程 有增根,则a=.

17.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2

八年级数学期末试卷及答案

数学期末考试快到了,不知道 八年级 的同学们是否准备好考试前的准备呢下面是我为大家整编的 八年级数学 期末试卷,感谢欣赏。

八年级数学期末试卷试题

一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答.

1.在平面直角坐标系中,点( , )关于 轴对称的点的坐标是( )

A.( , ) B.( , ) C.( , ) D.( , )

2.函数 中,自变量 的取值范围是( )

A. > B. C. ≥ D.

3.要判断甲、乙两队舞蹈队的身高哪队比较整齐,通常需要比较这两队舞蹈队身高的( ).

A. 方差 B.中位数 C. 众数 D.平均数

4.下列说法中错误的是()

A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;

C.两条对角线互相垂直的矩形是正方形; D.两条对角线相等的菱形是正方形.

5.已知反比例函数 ,在下列结论中,不正确的是( ).

A.图象必经过点(1,2) B. 随 的增大而减少

C.图象在第一、三象限 D.若 >1,则 <2

6.如图,菱形ABCD中,∠ A=60°,周长是16,则菱形的面积是()

A.16 B.16 C.16 D.8

7.如图,矩形 的边 ,且 在平面直角坐标系中 轴的正半轴上,点 在点 的左侧,直线 经过点 (3,3)和点 ,且 .将直线 沿 轴向下平移得到直线 ,若点 落在矩形 的内部,则 的取值范围是()

A. B. C. D.

二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.

8.化简: .

9.将0.000000123用科学记数法表示为 .

10.在□ABCD中,∠A:∠B=3:2,则∠D =度.

11.一次函数 的图象如图所示,当 时, 的取值范围是.

12.某校为了发展校园 足球 运动,组建了校足球队,队员年龄分布如右上图所示,则这些队员年龄的众数是.

13.化简: =.

14.若点M(m,1)在反比例函数 的图象上,则m =.

15.直线 与 轴的交点坐标为 .

16.在平面直角坐标系中,正方形 的顶点 、 、 的坐标分别为(﹣1,1)、

(﹣1,﹣1)、(1,﹣1),则顶点 的坐标为.

17.如图,在△ABC中,BC =10,AB = 6,AC = 8,P为

边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的

中点,则(1) 度;(2)AM的最小值是.

三、解答题(9题,共89分)在答题卡上相应题目的答题区域内作答.

18.(9分)计算:

19.(9分)先化简,再求值: ,其中

20.(9分)如图,在矩形 中,对角线 与 相交于点 , , ,求 的长.

21.(9分)如图,一次函数 的图象与反比例函数 的图象交于点A ,C ,交y轴于点B,交x轴于点D.

(1) 求反比例函数 和一次函数 的表达式;

(2) 连接OA,OC.求△AOC的面积.

22.(9分)某学校设立学生奖学金时规定:综合成绩最高者得一等奖,综合成绩包括体育成绩、德育成绩、学习成绩三项,这三项成绩分别按1︰3︰6的比例计入综合成绩.小明、小亮两位同学入围测评,他们的体育成绩、德育成绩、学习成绩如下表.请你通过计算他们的综合成绩,判断谁能拿到一等奖

体育成绩 德育成绩 学习成绩

小明 96 94 90

小亮 90 93 92

23.(9分)某校初二年学生乘车到距学校40千米的 社会实践 基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车是中巴车的1.2倍,求中巴车的.

24.(9分)如图,在矩形ABCD中,AB =4cm,BC =8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.

(1)连接AF,CE,求证:四边形AFCE为菱形;

(2)求AF的长.

25.(13分)甲、乙两人从学校出发,沿相同的线路跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的跑向体育馆,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.

(1)在跑步的全过程中,甲共跑了米,甲的为米/秒;

(2)求乙跑步的及乙在途中等候甲的时间;

(3)求乙出发多长时间第一次与甲相遇

26.(13分)如图,在平面直角坐标系中,直线 : 分别与 轴、 轴交于点 、 ,且与直线 : 交于点 .

(1)点 的坐标是;点 的坐标是;点 的坐标是;

(2)若 是线段 上的点,且 的面积为12,求直线 的函数表达式;

(3)在(2)的条件下,设 是射线 上的点,在平面内是否存在点 ,使以 、 、 、 为顶点的四边形是菱形若存在,直接写出点 的坐标;若不存在,请说明理由.

八年级数学期末试卷参考答案

一、选择题(每小题3分,共21分)

1.D; 2.B; 3.A; 4.B;5.B;6.D; 7.C;

二、填空题(每小题4分,共40分)

8. ; 9. ; 10. 72; 11. ; 12. 14岁(没有单位不扣分); 13. ; 14. ;

15.(0,2); 16.(1,1); 17. (1)90;(2) 2.4

三、解答题(共89分)

18.(9分) 解:

= …………………………8分

=6………………………………………9分

19.(9分)解:

= …………3分

= …………………………5分

= …………………………………6分

当 时,原式= …………………7分

=2………………………9分

20. (9分) 解:在矩形 中

,………………2分

……………………………3分

∴ 是等边三角形………………5分

∴ ………………………6分

在Rt 中,

………………9分

21.(9分) 解:(1)∵ 反比例函数 的图象经过点A﹙-2,-5﹚,

∴ m=(-2)×( -5)=10.

∴ 反比例函数的表达式为 . ……………………………………………………2分

∵ 点C﹙5,n﹚在反比例函数的图象上,

∴ .

∴ C的坐标为﹙5,2﹚. …………………………………………………………………3分

∵ 一次函数的图象经过点A,C,将这两个点的坐标代入 ,得

解得 ………………………………………………………5分

∴ 所求一次函数的表达式为y=x-3. …………………………………………………6分

(2) ∵ 一次函数y=x-3的图像交y轴于点B,

∴ B点坐标为﹙0,-3﹚. ………………………………………………………………7分

∴ OB=3.

∵ A点的横坐标为-2,C点的横坐标为5,

∴ S△AOC= S△AOB+ S△BOC= . ………………9分

22.(9分)解:小明的综合成绩= …………………………(4分)

小亮的综合成绩= ………………………(8分)

∵92.1>91.8 , ∴小亮能拿到一等奖. …………………………………………(9分)

23.(9分)

解:设中巴车为 千米/小时,则旅游车的为 千米/小时.………1分

依题意得 ………………………5分

解得 ………………………7分

经检验 是原方程的解且符合题意………………………8分

答:中巴车的为50千米/小时. ………………………9分

24.(9分)(1)证明:

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠AEO =∠CFO,

∵AC的垂直平分线EF,

∴AO = OC,AC⊥EF,………………………………2分

在△AEO和△CFO中

∴△AEO ≌△CFO(AAS),………………………………3分

∴OE = OF,

∵O A= OC,

∴四边形AECF是平行四边形,………………………………4分

∵AC⊥EF,

∴平行四边形AECF是菱形;……………………………………5分

(2)解:设AF=acm,

∵四边形AECF是菱形,

∴AF=CF=acm,…………………………………………6分

∵BC=8cm,

∴BF=(8-a)cm,

在Rt△ABF中,由勾股定理得:42+(8-a)2=a2,…………8分

a=5,即AF=5cm。………………………………………………9分

25.(13分) 解:(1)900,1.5.…………………………4分

(2)过B作BE⊥x轴于E.

甲跑500秒的路程是500×1.5=750米,……………………5分

甲跑600米的时间是(750﹣150)÷1.5=400秒,…………6分

乙跑步的是750÷(400﹣100)=2.5米/秒,……………7分

乙在途中等候甲的时间是500﹣400=100秒.………………8分

(3)∵D(600,900),A(100,0),B(400,750),

∴OD的函数关系式是 ……………………9分

AB的函数关系式是 ……………11分

根据题意得

解得 ,…………………………12分

∴乙出发150秒时第一次与甲相遇.…………13分

26. (13分)解:(1)(6,3);(12,0);(0,6);………………3分

(2)设D(x, x),

∵△COD的面积为12,

∴ ,

解得: ,

∴D(4,2),………………………………………………5分

设直线CD的函数表达式是 ,

把C(0,6),D(4,2)代入得: ,

解得: ,

则直线CD解析式为 ;……………………7分

(3)存在点Q,使以O、C、P、Q为顶点的四边形是菱形,

如图所示,分三种情况考虑:

(i)当四边形 为菱形时,由 ,得到四边形 为正方形,此时 ,即 (6,6);………………………………………………9分

(ii)当四边形 为菱形时,由 坐标为(0,6),得到 纵坐标为3,

把 代入直线 解析式 中,得: ,此时 (﹣3,3);…………11分

(iii)当四边形 为菱形时,则有 ,

此时 (3 ,﹣3 ),……………………………………13分

综上,点 的坐标是(6,6)或(﹣3,3)或(3 ,﹣3 ).

八年级数学期末试卷及答案相关 文章 :

1. 2016八年级数学期末试卷及答案

2. 2017八年级数学期末试卷及答案

3. 八年级数学期末测试题

4. 八年级数学上册期末试卷

5. 八年级期末数学试卷

新人教版八年级下册数学期末试卷

折桂夺魁今日事,人生遍开幸福花。祝你 八年级 数学期末考试成功!我整理了关于新人教版八年级下册数学期末试卷,希望对大家有帮助!

新人教版八年级下册数学期末试题

一、选择题(每小题3分)

1.下列各数是无理数的是()

A. B.﹣ C.π D.﹣

2.下列关于四边形的说法,正确的是()

A.四个角相等的菱形是正方形

B.对角线互相垂直的四边形是菱形

C.有两边相等的平行四边形是菱形

D.两条对角线相等的四边形是菱形

3.使代数式 有意义的x的取值范围()

A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3

4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()

A.55° B.75° C.95° D.110°

5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()

A.y1>y2 B.y1=y2 C.y1

6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()

A.6 B.12 C.20 D.24

7.不等式组 的解集是 x>2,则m的取值范围是()

A.m<1 B.m≥1 C.m≤1 D.m>1

8.若 +|2a﹣b+1|=0,则(b﹣a)2016的值为()

A.﹣1 B.1 C.52015 D.﹣52015

9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()

A.① B.② C.③ D.④

10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()

①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.

A.①③ B.②③ C.③④ D.②④

11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()

A.直角三角形 B.等腰三角形

C.等腰直角三角形 D.等腰三角形或直角三角形

12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤()

A.1.5 B.2 C.2.5 D.3

13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()

A.梯形 B.矩形 C.菱形 D.正方形

14.已知xy>0,化简二次根式x 的正确结果为()

A. B. C.﹣ D.﹣

15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()

A.小强乘公共汽车用了20分钟

B.小强在公共汽车站等小颖用了10分钟

C.公共汽车的平均是30公里/小时

D.小强从家到公共汽车站步行了2公里

16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()

A.六折 B.七折 C.八折 D.九折

17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()

A.x>﹣2 B.x<﹣2 C.﹣3

八年级人教版数学第二学期期末试题5套

八年级数学下学期复习(五)

姓名 班级 学号 得分

一、 选择题(每小题3分,共24分)

1.10名学生的体重分别是41,48,50,53,49,50,53,53,51,67(单位:kg)这组数

据的极差是( )

A. 27 B. 26 C. 25 D. 24

2.某校五个绿化小组一天植树的棵数如下:10,10,12,x, 8.已知这组数据的众数与平均数相等,那么这组数据的中位数是( )

A. 8 B. 9 C. 10 D. 12

3.某班50名学生身高测量结果如下表:

身高 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.64

人数 1 1 3 4 3 4 4 6 8 10 6

该班学生身高的众数和中位数分别是( )

A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1.60

4.如果一组数据 , ,…, 的方差是2,那么一组新数据2 ,2 ,…,2 的方差是( )

A. 2 B. 4 C. 8 D. 16

5.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:

班级 参加人数 中位数 方差 平均数

甲 55 149 191 135

乙 55 151 110 135

某同学分析上表后得出如下结论:

(1)甲、乙两班学生成绩平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大,上述结论正确的是( )

A. ⑴⑵⑶ B.⑴⑵ C.⑴⑶ D.⑵⑶

6.如果样本1,2,3,5,x 的平均数是3,那么样本的方差为( )

A. 3 B. 9 C. 4 D. 2

7.某校八年级有两个班,在一次数学考试中,一班参加考试人数为52人,平均成绩为75分,二班参加考试人数为50 人,平均成绩为76.65分,则该次考试中,两个班的平均成绩为( )分

A. 78.58 B.75.81 C.75.76 D.75.75

8.一鞋店试销一种新款女鞋,试销期间卖出情况如下表:

型号 22 22.5 23 23.5 24 24.5 25

数量/双 3 5 10 15 8 3 2

对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是( )

A. 平均数 B. 众数 C. 中位数 D. 方差

二、 填空题(每小题4分,共24分)

9.一次知识竞赛中,甲、乙两组学生成绩如下:

分数 50 60 70 80 90 100

数 甲 2 5 10 13 14 6

乙 4 4 16 2 12 12

则: = , = .

10.某次射击练习,甲、乙二人各射靶5次,命中的环数如下表:

甲射靶环数 7 8 6 8 6

乙射靶环数 9 5 6 7 8

那么射击成绩比较稳定的是: 。

11.八(2)班为了正确引导学生树立正确的消费观,随机调查了10名同学某日的零花钱情况,其统计图表如下:

零花钱在3元(包括3元)

的学生所占比例数为 ,

6

4

该班学生每日零花钱的平均

3

大约是 元。 2

1

1 2 3 4 5 6 7 8 9 10

12.为了调查某一段的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天314辆,那么这30天该路口同一时段通过的汽车平均数为 。

13.小芳测得连续五天日最低气温并整理后得出下表:

日期 一 二 三 四 五 方差 平均气温

最低气温 1 3 2 5

3

由于不小心被墨迹污染了两个数据,这两个数据分别是 , 。

14.某地两校联谊文艺晚会上甲、乙两个文艺节目均由10名演员表演,他们的年龄(单位:岁)分别如下:甲节目:13 13 14 15 15 15 15 16 17 17

乙节目:5 5 6 6 6 6 7 7 50 52

甲的众数是 ,演员年龄波动较小的一个是 。

三、 解答题 y(人数)

15.(12分)当今,青少年视力水平下降已引起

全社会的关注,为了了解某校3000名学生

视力情况,从中抽取了一部分学生进行了

一次抽样调查,利用所得的数据绘制的直方

图(长方形的高表示该组人数)如右:

解答下列问题:

(1)本次抽样调查共抽测了多少名学生?

(2)参加抽测学生的视力的众数在什么

范围内?

(3)若视力为4.9,5.0,5.1及为正常 ,

3.95 4.25 4.55 4.85 5.15 5.45 x (视力)

试估计该校学生视力正常的人数约为多少?

16.(8分)一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条鱼做上标记,然后放回湖里,过了一段时间,待带标记的鱼完全混合于鱼群后,再捕捞了五次,记录如下:第一次捕上90条鱼,其中带标记的有11条;第二次捕上100条鱼,其中带标记的鱼有9条;第三次捕上120条鱼,其中带有标记的鱼有12条;第四次捕上100条鱼,其中带标记的鱼有9条;第五次捕上80条鱼,其中带标记的鱼有8条。问池塘里大约有多少条鱼?

17.(12分)2004年8月29日凌晨,在奥运会女排决赛在,中国女排在先失两局的情况下上演大逆转,最终以3∶2战胜俄罗斯女排勇夺冠军,这是自1984年女排时隔20年再次登上奥运之颠。下图是这一关键之战的技术 87

数据统计: 74

(1)中国队和俄罗斯队的总得分分别是多

少 ?已知第五局的比分为15∶12,请计算

出中国队、俄罗斯队前四局的平均分。

(2)中国队和俄罗斯队的得分项目的 23

“众数”分别是什么项目? 15

(3)从上图中你能获取那些信息?(写 14

出两条即可)

2

18.(10分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:

候选人 面试 笔试

形体 口才 专业水平 创新能力

甲 86 90 96 92

乙 92 88 95 93

(1) 若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5∶5∶4∶6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?

(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%,那么你认为该公司应该录取谁?

5

4

3

19.(10分)设营业员的月销售 2 1

额为x(单位:万元)x<15为不

13 14 15 16 17 18 19 20 21 22 23 24 25 28

称职,15≤x<20为基本称职,20≤x<25为称职,x≥25为优秀。(1)求四个层次营业员所占的百分比,并用扇形图统计出来。(2)所有称职和优秀的营业员月销售额的中位数、众数和平均数。

测试题参考答案

1~8 B C C C

A D B B

9~14 80 , 256 甲 50% ,2.8

306 4和2 15,甲

15. (1)150 (2)4.25~4.55 (3)1400

16. 1000条

17.(1)118,112. 25.75,25

(2)进攻得分

(3)略

18.(1)90.8,91.9;乙

(2)92.5,92.15;甲

19.(1)略

(2)22,20 22.3

八年级数学下学期复习(四)

班级 姓名 学号 得分

一、选择题(每小题3分,共24分)

1.下列命题中正确的是( )

A.对角线互相平分的四边形是菱形 B.对角线互相平分且相等的四边形是菱形

C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分的四边形是菱形

2.某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H测量得对角线AC=10米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是( )

A. 40米 B. 30米 C.20米 D.10米

3.在梯形ABCD中,AD‖BC,对角线AC⊥BD,且AC=10,BD=6,则该梯形的面积是( )

A. 30 B. 15 C. D.60

4.如图,已知矩形ABCD,R、P分别是DC、BC上

的点,E、F分别是AP、RP的中点,当P在BC

上从B向C移动而R不动时,那么下列结论成立

的是( )

A. 线段Ef的长逐渐增大.B.线段Ef的长逐渐减少

C.线段EF的长不改变. D.线段EF的长不能确定.

5.在平行四边形、矩形、正方形、等腰梯形、直角

梯形中,不是轴对称图形的有( )

A. 1个 B.2个 C.3个 D.4个

6.如图, ABCD中的两条对角线相交于O点,通过旋转、

平移后,图中能重合的三角形共有( )

A.2对 B.3对 C.4对 D.5对

7.菱形的周长为高的8倍,则它的一组邻角是( )

A.30°和150° B.45°和135° C.60°和120° D.80°和100°

8.在矩形ABCD中,AB=3,BC=4,则点A到对角线BD的距离为( )

A. B.2 C. D.

二、填空题(每小题3分,共18分)

9.在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE= 度

10.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF

是平行四边形,还需要增加的一个条件是 . (填一个即可)

(9题图) (10题图)

11.如图,一个平行四边形被分成面积为 、 、 、 四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,则 与 的大小关系为 .

12.若梯形的面积为12c ,高为3cm,则此中位线长为 .

13.对角线 的四边形是菱形.

14.在梯形ABCD中,DC‖AB,DC+CB=AB,且∠A=51°,则∠B的度数是 .

三.解答题

15.(10分)已知:如图,在平行四边形ABCD中,

E、F是对角线AC上的两点,且AE=CF.

求证:DE=BF E

16.(18分)已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,

垂足分别是E、F,且BF=CE.

求证:(1)△ABC是等腰三角形;

(2)当∠A=90°时,试判断四边形AFDE是

怎样的四边形,证明你的判断结论.

17.(10分)如图,已知直线m‖n,A、B为直线n上的两点,C、P为直线m上的两

点.(1)请写出图中面积相等的各对三角形:

.

(2)如果A、B、C为三个定点,点P在m上移动

那么无论P点移动到任何位置时总有

与△ABC的面积相等;

理由是: .

18.(10分)如图,在菱形ABCD中,E为AD中点,

EF⊥AC交CB的延长线于F.

求证:AB与EF互相平分

19.(14分)如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF,

请回答下列问题:

(1) 求证:四边形ADEF是平行四边形;

(2) 当△ABC满足什么条件时,四边形ADEF是矩形.

测试题参考答案

1~8 D C A C

B C A A

9~14 20 BE=DF(不唯一) =

4 互相垂直平分 78°

15. 略

16. (1) 略

(2)AFDE是正方形

17.(1)△ABC和△ABP, △AOC和△BOP,△CPA和△CPB;

(2) △ABP,

(3)同底等高

18.略

19. (1)略

(2)150°

习题精选

1.判断题

⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角.

⑵命题:“在一个三角形中,有一个角是30º,那么它所对的边是另一边的一半.”的逆命题是真命题.

⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形.

⑷△ABC的三边之比是1:1: ,则△ABC是直角三角形.

答案:对,错,错,对;

2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )

A.如果∠C-∠B=∠A,则△ABC是直角三角形.

B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°.

C.如果(c+a)(c-a)=b2,则△ABC是直角三角形.

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.

答案:D

3.下列四条线段不能组成直角三角形的是( )

A.a=8,b=15,c=17

B.a=9,b=12,c=15

C.a= ,b= ,c=

D.a:b:c=2:3:4

答案:D

4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

⑴a= ,b= ,c= ; ⑵a=5,b=7,c=9;

⑶a=2,b= ,c= ; ⑷a=5,b= ,c=1.

答案:⑴是,∠B;⑵不是;⑶是,∠C;⑷是,∠A.

5.叙述下列命题的逆命题,并判断逆命题是否正确.

⑴如果a3>0,那么a2>0;

⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;

⑶如果两个三角形全等,那么它们的对应角相等;

⑷关于某条直线对称的两条线段一定相等.

答案:⑴如果a2>0,那么a3>0;假命题.

⑵如果三角形是锐角三角形,那么有一个角是锐角;真命题.

⑶如果两个三角形的对应角相等,那么这两个三角形全等;假命题.

⑷两条相等的线段一定关于某条直线对称;假命题.

6.填空题.

⑴任何一个命题都有 ,但任何一个定理未必都有 .

⑵“两直线平行,内错角相等.”的逆定理是 .

⑶在△ABC中,若a2=b2-c2,则△ABC是 三角形, 是直角;若a2<b2-c2,则∠B是 .

⑷若在△ABC中,a=m2-n2,b=2mn,c= m2+n2,则△ABC是 三角形.

答案:⑴逆命题,逆定理;⑵内错角相等,两直线平行;⑶直角,∠B,钝角;⑷直角.

⑸小强在操场上向东走 80m后,又走了 60m,再走 100m回到原地.小强在操场上向东走了 80m后,又走 60m的方向是 .

答案:向正南或正北.

7.若三角形的三边是 ⑴1、 、2; ⑵ ; ⑶32,42,52 ⑷9,40,41;

⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )

A.2个 B.3个 C.4个 D.5个

答案:B

8.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2) =0,则△ABC是( )

A.等腰三角形;

B.直角三角形;

C.等腰三角形或直角三角形;

D.等腰直角三角形.

答案:C

9.如图,在操场上竖直立着一根长为 2米的测影竿CD,早晨测得它的影长BD为 4米,中午测得它的影长AD为 1米,则A、B、C三点能否构成直角三角形?为什么?

答案:能,因为BC2=BD2+CD2=20,AC2=AD2+CD2=5,AB2=25,所以BC2+AC2= AB2

10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?

答案:由△ABC是直角三角形,可知∠CAB+∠CBA=90°,所以有∠CAB=40°,航向为北偏东50°.

11.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB= 4米,BC= 3米,CD= 13米,DA=12米,又已知∠B=90º.

提示:连结AC.AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90º,

S四边形=S△ADC+S△ABC=36平方米.

12.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD•BD.求证:△ABC中是直角三角形.

提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=

AD2+2AD•BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°.

13.在△ABC中,AB= 13cm,AC= 24cm,中线BD= 5cm.求证:△ABC是等腰三角形.

提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC.

14.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2.求证:AB2=AE2+CE2.

提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE2+CE2.

15.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c= ,试判定△ABC的形状.

提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14.又因为c2=14,所以a2+b2=c2 .

何庄中学八年级数学月考试卷 09年3月

班级--------- 姓名--------------- 考号-------- 分数----------

一、 选择题、(每小题3分,共30分)请认真选,你一定能选对!

1分式 、 的最简公分母是( )

A、x+1 B、x-1 C、(x+1)(x-1) D、x(x

2、分式 分子分母的公因式是( )

A、x B、x C、3x D、12x

3、分式方程 + = — 的解是( )

A、x=1 B、x= — 1 C、无解 D、x =

4、若分式方程 + =2无解,则m的值是( )

A、1 B、2 C、3 D、4

5、计算分式 ÷ . 的结果是( )

A、2x B、 C、 D

6、用科学计数法表示0.00000207的结果是( )

A、2.07×10 B、2.07×10 C、207×10 D、2.07×10

7、一艘轮船在静水中的为30千米/时,它沿江顺流航行100千米所用的时间与它逆流航行60千米所用的时间相等,若设该江流水的为x千米/时,则所列方程为( )

A、 = B、 C、 D、

8 当k>0,y<0时,反比例函数y= 的图像在( )

A、第一象限 B 第二象限 C、第三象限 D、第四象限

9、下列函数中y是x反比例函数的是( )

A、y=- B、y= - C、y= D、y=

10、对于y= 下列说法错误的是( )

A、图像必经过点(1,2) B、y随x的增大而减小 C、图像在第一、三象限 D、若X>1,则y<2

二、填空:(每小题3分,共24分)认真思考,仔细填写,你一定能成功!

11、若分式 有意义,则X___ 12、若分式 ,则X=___

13、不改变分式的值,把m的符号都化为正的,则 ____

14、 在反比例函数Y= 的图像上有三点(x ,y )、( x ,y )、(x ,y )

X <0<x <x ,则y 、y 、y 的大小关系是_______

15、把分式 化简得______。

16、一种细菌的半径4×10 米,用小数表示为_____米

17、若x+ 则x =____

18、已知函数y= 的图像一个分支在第四象限,则k的范围是

三、计算:(每小题6分,共20分) 要小心啊,不然会出错!

19、 20、

21、( 22、(x-1- ÷

四、解方程:(每小题6分,共10分)相信你,一定能解好,可要注意步骤呀!

23、 24、

五、列方程解应用题:(10分)你要细心呀,一定能做好!

25、何庄中学八(1)、八(2)两班学生参加植树造林,已知八(1)班比八(2)班每天多植5棵树,八(1)班植80棵树所用的时间与八(2)班植70棵树所用的时间相等,问两班每天各植多少棵树?

六、(每小题10分,共20分)本题并不难,你要认真考虑,一定能做得完美无缺的!

26、已知反比例函数y= 的图像的一支在第四象限,

(1)、图像的另一支在哪个象限?常数k的取值范围是什么?

(2)、在这个函数图像的某一支上取点A(a,b)和点B(a ),如果a>a ,那么b和b 有怎样的大小关系?

(3)、如果点C(m,n)和D(m )均在此函数图像上,且m<0,m >0那么n和n 有怎样的大小关系

27、夏季即将来临,太和仆人商厦准备安装一批空调,如果每天安装60台,需20天装完。

(1)如果每天安装X台,所需要的天数为Y,写出Y与X的函数关系式。

(2)、根据所求关系式计算,如果每天安装空调80台,那么需几天完成?

(3)、由于天气突然变热,需在12天内全部装完,每天至少要装多少台?

温馨提示:试卷做完后一定要认真检查,可不要急着送卷,不然你会后悔的!要养成谨慎习惯! 习题二

一、填空题:

1.把下列分数化为最简分数:(1) =__;(2) =_;(3) =__.

2.分式的基本性质为:;

用字母表示为:_.

3.若a= ,则 的值等于_. 4.计算 =.

5. ,则?处应填上,其中条件是_.

选择题:

6.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以( )

A.10 B. 9 C.45 D.90

7.下列等式:① = − ;② = ;③ = − ;

④ = − 中,成立的是( )

A.①② B.③④ C.①③ D.②④

8.不改变分式 的值,使分子、分母最高次项的系数为正数,正确的是( )

A. B. C. D.

9.分式 , , , 中是最简分式的有( )

A.1个 B.2个 C.3个 D.4个

10.根据分式的基本性质,分式 可变形为( )

A. B. C.− D.

11.下列各式中,正确的是( )

A. = ; B. = ; C. = ; D. =

12.下列各式中,正确的是( )

A. B. = 0 C. D.

13.公式 , , 的最简公分母为( )

A.(x−1)2 B.(x−1) 3 C.(x−1) D.(x−1)2(1−x)3

解答题:

14.把下列各组分数化为同分母分数:

(1) , , ; (2) , , .

15.约分:

(1) ; (2) .

16.通分:

(1) , ; (2) , .

17.已知a2 -4a+9b2+6b+5=0,求 − 的值.

18.已知x2+3x+1=0,求x2+ 的值.

19.已知x+ =3,求 的值

对不起,几何图形不能上传,而且只能容纳这么多。请原谅!

版权声明

标签:

我们需要您来参与下,来添加一个评论吧(●'◡'●)

验证码: 看不清?点击更换

注:网友评论仅供其表达个人看法,并不代表本站立场。

本站介绍

小笋芽提供全国考试报名时间、考试政策解读及备考资料,涵盖公务员、教师资格、职业资格等考试资讯,同步分享职场工作总结模板与学习经验,助考生高效规划备考,一站式解决考试全周期需求。

搜索
同类文章
随机tag
友情链接